Enhanced Effective Filtering Approach (eEFA) for Improving HSR Network Performance in Smart Grids

نویسندگان

  • Nguyen Xuan Tien
  • Jong Myung Rhee
  • Sang Yoon Park
چکیده

The effective filtering approach (EFA) is one of the most effective approaches for improving the network traffic performance of high-availability seamless redundancy (HSR) networks. However, because EFA uses port locking (PL) for detecting nondestination doubly-attached nodes with HSR protocol (DANH) rings in HSR networks, it forwards the first sent frame to all DANH rings in the network. In addition, it uses a control message for discovering passive QuadBox rings in both unidirectional and bidirectional communications. In this study, we propose an enhanced version of EFA called enhanced-EFA (eEFA) that does not forward unicast frames to nondestination DANH rings. eEFA does not use any control message to discover passive QuadBox rings in bidirectional communications. eEFA thus reduces the network traffic in HSR networks compared with EFA. Analytical and simulation results for a sample network show that the traffic reduction of eEFA was 4–26% and 2–20% for unidirectional and bidirectional communications, respectively, compared to EFA. eEFA, thus, clearly saves network bandwidth and improves the network performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Combined Approach Effectively Enhancing Traffic Performance for HSR Protocol in Smart Grids

In this paper, we propose a very effectively filtering approach (EFA) to enhance network traffic performance for high-availability seamless redundancy (HSR) protocol in smart grids. The EFA combines a novel filtering technique for QuadBox rings (FQR) with two existing filtering techniques, including quick removing (QR) and port locking (PL), to effectively reduce redundant unicast traffic withi...

متن کامل

Optimal Self-healing of Smart Distribution Grids Based on Spanning Trees to Improve System Reliability

In this paper, a self-healing approach for smart distribution network is presented based on Graph theory and cut sets. In the proposed Graph theory based approach, the upstream grid and all the existing microgrids are modeled as a common node after fault occurrence. Thereafter, the maneuvering lines which are in the cut sets are selected as the recovery path for alternatives networks by making ...

متن کامل

Improving Data Grids Performance by Using Modified Dynamic Hierarchical Replication Strategy

Abstract: A Data Grid connects a collection of geographically distributed computational and storage resources that enables users to share data and other resources. Data replication, a technique much discussed by Data Grid researchers in recent years creates multiple copies of file and places them in various locations to shorten file access times. In this paper, a dynamic data replication strate...

متن کامل

FHT: A Novel Approach for Filtering High-Availability Seamless Redundancy (HSR) Traffic

High-availability seamless redundancy (HSR) is a protocol for Ethernet networks that provides duplicated frames with zero recovery time in the event of any network component’s failure. It is suited for applications that demand high availability and a very short time-outs such as substation automation systems (SAS). However, HSR generates excessive unnecessary unicast frames and spreads them thr...

متن کامل

An Effective Attack-Resilient Kalman Filter-Based Approach for Dynamic State Estimation of Synchronous Machine

Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the Cyber-Physical System (CPS). To enhance the security of KF-based state estimation, in this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018